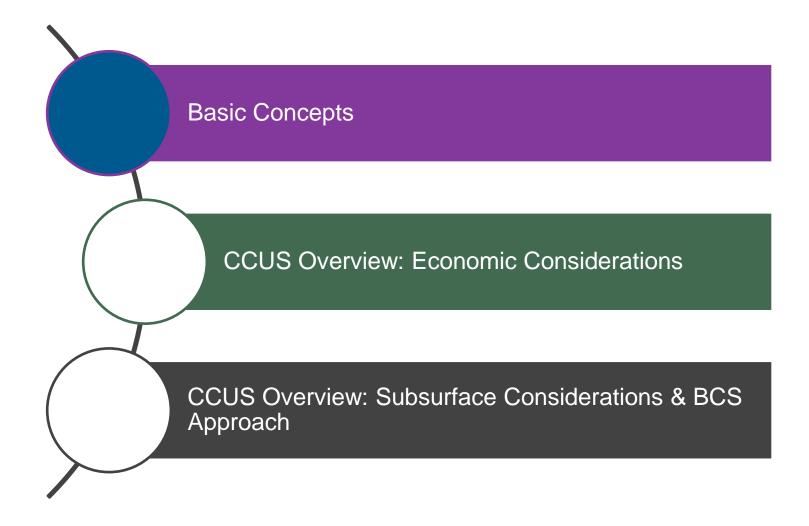
Battelle Carbon Services


CCUS Overview

March, 2023

Evan Zeller Commercial Development Director <u>zellere@battelle.org</u> 317.435.1653

Presentation Outline

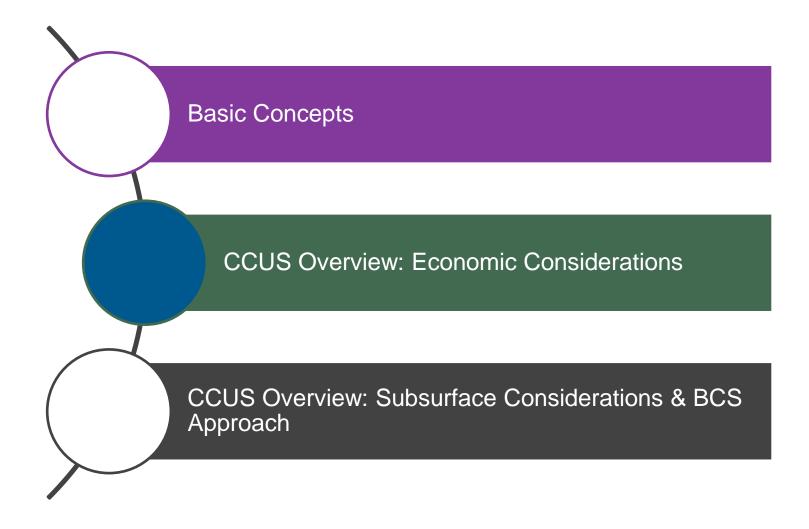
What is a Tonne?

- American Ton = 2,000 lbs
- Metric Tonne = 2,204.6 lbs
- 1 Tonne $CO_2 = 19.3 \text{ mcf}$
- At standard conditions, 1 tonne of CO₂ is 27-ft cube
- At supercritical conditions, 1 tonne of CO₂ is 680 gals
- Global Annual CO₂ Emissions = 33.5 BMT
- U.S. Annual CO₂ Emissions = 5.1 BMT
- U.S. Annual 45Q-Eligible CO₂ Emissions = 2.3 BMT

Inflation Reduction Act of 2022

- Two-tiered credit structure
- Need to satisfy prevailing wage and apprenticeship requirements to take full credit (otherwise 20%) – guideline being written by IRS
- More monetization options:
 - Direct Pay option limited to certain tax exempt and government entities, except first 5 years of 45 Q/V/X/Z
 - Transferability of credits 45 Q/V/X/Z
 - Q-CCUS
 - V Hydrogen
 - X Batteries
 - Z Clean Fuel

Carbon Capture and Sequestration Tax Credit 45Q


- 12-year payout period
- Extends beginning construction deadline to Jan 1, 2033
- Increases tax credit to:
 - \$85 for saline geologic storage
 - \$60 for EOR, zero-carbon fuel, chemicals, building materials, other products
 - \$180 for DAC for saline storage
 - \$130 for DAC for EOR or utilization
- Decreases plant facility size to:
 - 1,000 tonnes for DAC
 - 18,750 tonnes for power plants capturing >75% emissions from unit (not facility)
 - 12,500 tonnes for other facilities
- Reduction of tax credit if tax-exempt bonds used to finance the facility
- Prevailing wage and apprenticeship requirements apply

Permitting Overview

- U.S. EPA's **Underground Injection Control (UIC) Class VI Permitting** seeks to ensure the protection of underground sources of drinking water (USDWs) [40 §146.81 *et seq.*]
- U.S. EPA's greenhouse gas reporting program requires all CO₂ sequestration facilities to prepare and submit **Monitoring**, **Reporting**, **and Verification** (MRV) plans for the CO₂ injected, transported, and lost in a sequestration process [40 §98 subpart RR]

Presentation Outline

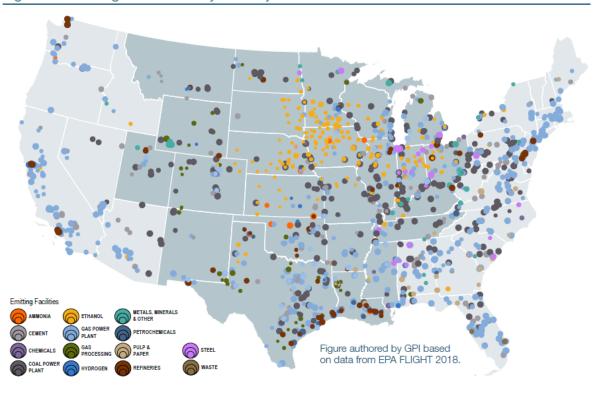

U.S. Emission Sources

Table 4. 45Q-eligible facilities by industry and emissions

Industry	Number of Facilities	Share of 45Q-Eligible Emissions	CO₂	Biogenic CO₂	Methane	Nitrous Oxide
Coal Power Plant	308	53.8%	1,269.6	0.3	3.0	6.2
Gas Power Plant	571	23.8%	565.4	0.7	0.4	0.4
Refineries	78	6.9%	163.3	-	0.6	0.4
Cement	135	3.7%	88.8	0.9	0.1	0.2
Hydrogen	57	2.7%	64.3	-	0.1	0.1
Steel	31	2.3%	54.0	-	0.2	-
Ethanol	173	1.3%	31.0	8.97	0.1	0.1
Ammonia	21	1.2%	25.1	0.0	0.0	4.1
Petrochemicals	30	1.1%	26.0	0.1	0.4	0.1
Metals, Minerals & Other	37	0.9%	19.5	-	0.4	-
Gas Processing	40	0.9%	19.9	-	0.7	-
Chemicals	16	0.8%	8.7	-	0.0	10.4
Pulp & Paper	18	0.4%	7.8	25.5	2.4	0.1
Waste	2	0.1%	0.8	1.2	0.6	-
Grand Total	1,517	100%	2,344.2	29.3	9.1	22.1

All emissions are in million metric tons.

Figure 3. 45Q-eligible facilities by industry and emissions

Credit: Great Plains Institute

CCS Components

- Components of CCS Chain:
 - CO₂ capture from anthropogenic sources e.g. power generation, industrial plants
 - CO₂ capture from natural sources e.g. direct air capture
 - Transport of CO₂ including compression/ pumping
 - Injection of CO₂ into suitable geologic storage or utilization of CO₂ in products
 - If injected, long-term monitoring and site care
 - If utilized, life cycle analysis

SITE SELECTION

Exploration FEED

OPERATION

- Capture
- Transport
- Injection
- Monitoring

CLOSURE

- Decommissioning
- Monitoring

POST-CLOSURE

- Long-term stewardship
- Monitoring

CCS project lifecycle Credit: GCCSI, 2019

Illustration of a Simplified CCS Network with One Capture Unit and One Storage Facility Credit: U.S. DOE

CO₂ Capture – Key Concepts

- Key Concepts to Efficient Capture:
 - CO₂ concentration
 - Economy of scale
 - Energy penalty
- Secondary Factors:
 - Technology maturity
 - 1st or nth of a kind
 - Modularization
 - Plant process optimization

Separation Process	Absorption	Adsorption	Membranes	Cryogenic	Compress and Dehydrate
Electric Power Generation	X		R	Т	X
Petroleum and Coal Products	X		Z	Т	X
Pulp and Paper	R			Т	X
Cement Manufacturing	X		R	Т	X
Chemical Manufacturing	X	Z		Т	X
Iron and Steel	X		Z	Т	X
Oil and Natural Gas Processing	X	Z	Z	Т	X
Pesticide, Fertilizer, Agricultural Chemical Manufacturing	Х	Z			Х
Bioethanol Fermentation					X

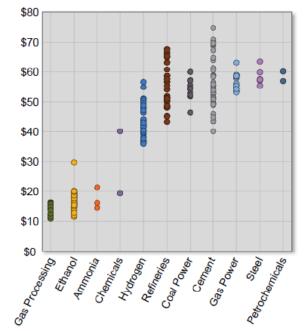
Key: X = primary, Z = secondary, R = research/demo, T = theoretical

CO₂ Management Addresses Diverse Sources, and the CO₂ Concentration Affects Technical and Cost Challenges



Cost of Capturing CO2 from Industrial Sources, January 10, 2014, DOE/NETL-2013/1602

Typical CO2 concentration in emissions Credit: U.S. DOE


Application of Various Separation/Capture Processes in Selected Industries Credit: National Petroleum Council, 2021

Economics – Key Challenges

- CCS requires large capital investment and long investment horizon.
- Capture is most costly component. Key concepts are concentration, scale, contaminants (excluding direct air capture).
- Transport and storage have limited room for cost improvement. Savings from volume aggregation.
- Hubs can lower unit cost across CCS chain.
 Capture fits individual plants no economy of scale.
- Specialized CCS Operators can lower unit cost.
- Government incentives are key for demonstration and initial commercial deployment.

Figure 5 & Table 6. Estimated capture cost per industry for near-term facilities in study area

Industry	Average Estimated Cost \$/ton	Range of Cost Estimates \$/ton
Gas Processing	\$14	\$11 - \$16
Ethanol	\$17	\$12 - \$30
Ammonia	\$17	\$15 - \$21
Chemicals	\$30	\$19 - \$40
Hydrogen	\$44	\$36 - \$57
Refineries	\$56	\$43 - \$68
Coal Power Plant	\$56	\$46 - \$60
Cement	\$56	\$40 - \$75
Gas Power Plant	\$57	\$53 - \$63
Steel	\$59	\$55 - \$64
Petrochemicals	\$59	\$57 - \$60

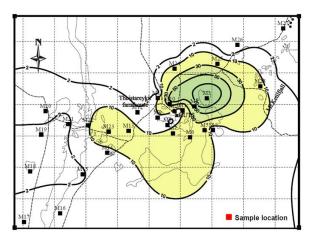
Figure authored by GPI based on data from EPA FLIGHT 2018.

Estimated capture cost per industry for near-term facilities in study area (closest to commercialization in U.S.)

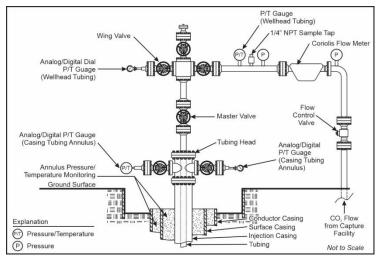
Credit: Great Plains Institute, 2020

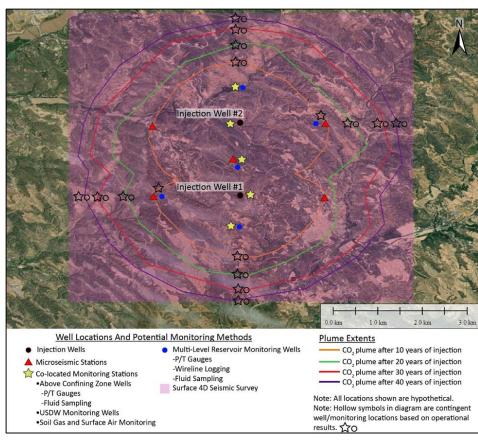
Midwest Carbon Express (Summit)

- Planned 12 Mtpa pipeline system. CO₂ from 31+ biofuel plants in 5 states in Midwest U.S. for storage.
- Expected construction in 2023, in-service 2024.
- 3200-km, USD \$4.5 billion budget.
- 4-inch to 12-inch diameter lateral pipelines.
- 8-inch to 20-inch trunk pipeline. Design pressure 2183 psig (150 barg).
- Terrain is flat, mostly farmland and rural.
- 8 initial pump stations on trunk line.



Midwest Carbon Express Pipeline in Midwest, U.S. Credit: Summit Carbon Solutions

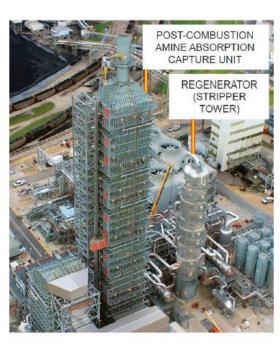


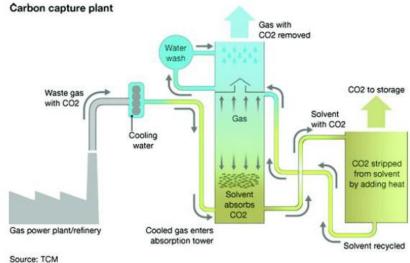

Injection and Well Site Monitoring

- Credit validation, lifecycle analysis, accounting.
- Class VI permit protects drinking water.
- Surface
 - Injection parameters, air, soil/gas, groundwater, corrosion
- Subsurface
 - CO₂ plume, pressure front, model validation, well integrity testing, pressure fall-off, seismic

Illustrative air dispersion model output

Simplified diagram of surface monitoring at injection wellhead(s) Credit: Battelle Illustrative CO₂ monitoring network Credit: Battelle


Cost Components


Capital expenditure:

- Capture facility
- Pipeline
- Injection facility
- Wells and monitoring infrastructure
- Land use, pore space leasing
- Project development and management

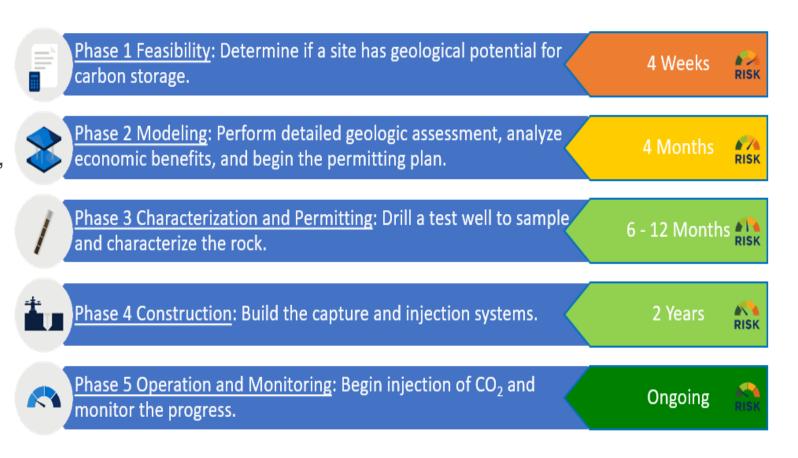
Operating expenditure:

- Labor and overhead
- Electricity/Fuel
- Chemicals
- Maintenance and repair
- Monitoring and site care
- Taxation
- Financing cost



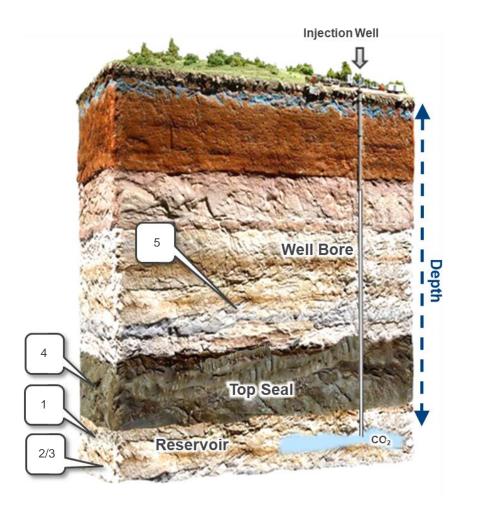
Schematic of solvent-based CO2 capture Credit: U.S. DOE

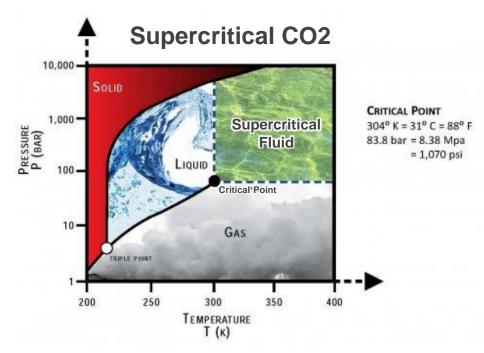
The NRG/JX Petra Nova CO2 Capture Project Near Houston, Texas Credit: National Petroleum Council



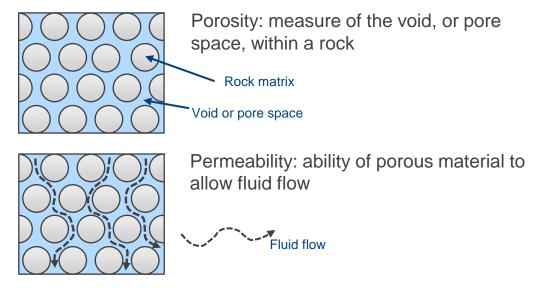
Presentation Outline

Our Phased Development Approach

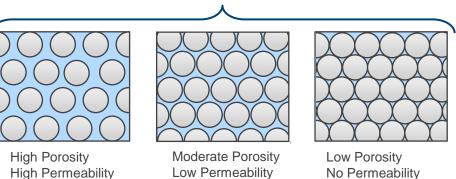

- Starting with short timeframe, accessibly priced studies
- Methodical, proven approach
- Minimizing occurrence of "surprises"
- Each Phase builds upon knowledge gained in previous Phase
- Increasing confidence
- Even projects that end at Phase 1 are of value


CO₂ Storage- Geologic Requirements

1	Reservoir	The presence of a rock, typically sandstone or carbonate, that meets the minimum depth threshold (>2,600 ft), reservoir characteristics (>1,070 psi and > 88F), and is not classified as USDW aquifer (>10,000 TDS)
2	Capacity	Reservoir rock has the thickness and lateral continuity to meet CO ₂ storage requirements
3	Injectivity/ Effectiveness	The ability of the reservoir rock to allow the flow of supercritical CO ₂ (permeability)
4	Confinement/ Top Seal	The presence of a rock that forms a barrier between the sequestered CO ₂ and US drinking water
5	Containment	The reservoir is sealed laterally when applicable and any potential pathways for CO ₂ leakage, such as faults, fractures, are either absent or the risk is mitigated



CO₂ Storage

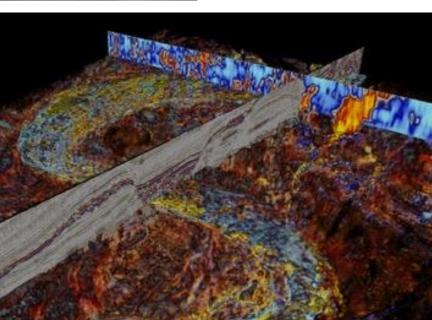


- CO2 has four states depending on Pressure and Temperature
- Supercritical CO₂ is fourth phase having density of liquid, but viscosity of gas
- State occurs at pressures and temperatures commonly found in deep, geologic formations
- Supercritical CO₂ state for plume management and maintenance

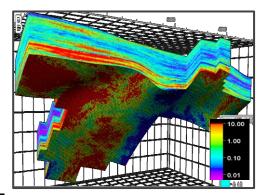
Reservoir & Containment/Top Seal

No Permeability

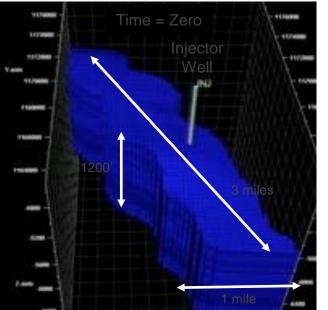
Top Seal Example

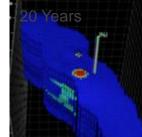


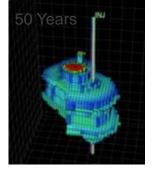
Potential Saline Storage



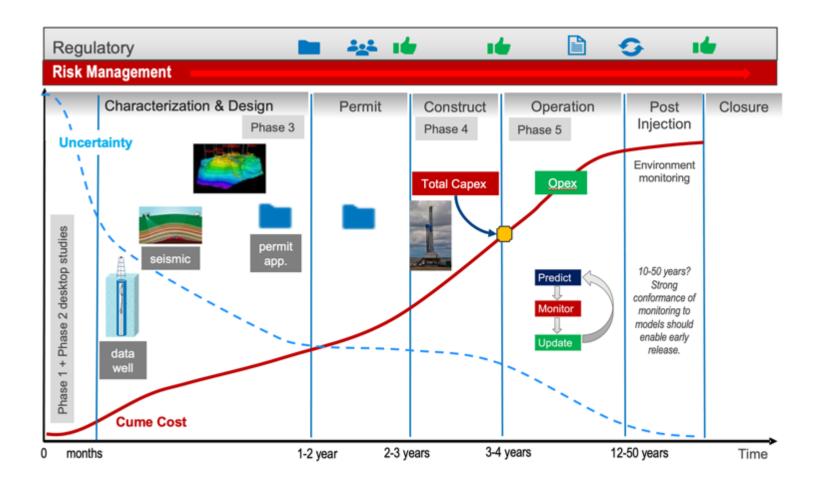
Predicting the CO₂ Plume Evolution with Models







- time of arrival
- location
- CO₂ saturation



Dynamic Model

Project Lifecycle & Risk

Questions?

BATTELE It can be done