An Example Case Study of CO₂ Storage Site Development in the MRCI

MRCI

October 2023

Steps to Implementing CO₂ **Storage Projects**

- Key steps to developing a CCS project in the MRCI:
 - Site feasibility study,
 - Front End Engineering and Design,
 - Test well drilling & characterization,
 - Acquisition of land/pore space assets,
 - Capture system construction,
 - Pipeline construction,
 - Permitting,
 - Injection system construction,
 - Baseline monitoring.
 - System operations and routine monitoring.
 - Post-injection site closure/well plugging & abandonment.

Steps to Implementing CO₂ Storage Projects

BUSINESS SENSITIVE

- 2-4 year timeline for CCS system development
- Financing & economics are important factors for CCS
- Initial capital costs can be offset by 45Q tax credits during operations

Step 1 Feasibility	3-4 Weeks
Determine if a site has geologic and economic potential for carbon storage.	RISK
Step 2 Modeling	3-4 Months
Perform a detailed geologic assessment and begin the permitting plan using existing data.	RISK
Step 3 Characterization and Permitting	6-24 Months
Drill a test well to sample and characterize the rock.	RISK
Step 4 Construction	6-12 Months
Build the capture and injection systems.	RISK
Step 5 Operation and Monitoring	Ongoing
Begin injection of CO ₂ and monitor the progress.	RISK

Midwest Regional Carbon Initiati

Steps to Implementing CO₂ Storage Projects

• Higher risk in early activities related to geologic uncertainty.

Example CO₂ Storage Case Study for MRCI

Generic Ethanol Plant

- 200,000 metric ton/yr CO₂
- 4 million metric tons over 20 years
- ~\$17M/yr 45Q (~\$100M-150M total)
- Farmland and industry land use
- Plant owner working with developer for CCS financing, design, construction

Example CO₂ Storage Site Case Study

- Sedimentary basin with few deep wells nearby, only regional data avail.
- Basal Sandstone storage zone
- Agricultural area with large farms and landowners

Feasibility Study

RISK

Scope

- High level analysis of a plant location
- Local geologic interpretation
- Social factors and permitting assessment
- All work is completed with readily available public data

Battelle Advantage

Highly experienced team with extensive history of study throughout different US regions

Deliverable: Professional recommendation to move forward or stop pursuit, including some indications of challenges to be faced in Step 2.

Feasibility Study

Identify any "show-stoppers", evaluate reservoir, injection, confinement

- Regional geological maps
- Regional Well logs, rock core test data
- Estimated downhole hydrologic conditions

- Regional data shows basal sandstone ~3,700-4,050 ft deep
- Multiple shale and carbonate caprocks ~2,000-3,700 ft
- No geological structures nearby, no history of seismic activity
- No nearby CO₂ sources
- Agricultural land use, no wetlands, no deep drinking water aquifers

Modeling

Perform a detailed **geologic assessment** and begin the **permitting plan** using existing data.

RISK

Scope

- Detailed geologic assessment
- Geologic and reservoir model development
- Well design and costs
- Data collection plan
- Permitting plan and contact with US EPA
- Existing data used, some purchased

Battelle Advantage

Proprietary, accelerated data analysis workflows that increase confidence and agility in model generation

Deliverable: Site identification, detailed characterization well plan, and informed no/no-go decision

Pore Space/Financing/Liability

• Pore space

- Pore space defined by area of review
- May involve leasing 2-15 sq. mile area at \$/acre

Financing options

- 1. Plant self-financing and own the capture/storage site
- 2. Developer financing with plant override on the project
- 3. Combination of 1 & 2

Liability

- Fit-for-purpose insurance products, 'Operators Extra Expense' insurance for drilling, Class VI UIC financial responsibility bond
- Insurance market for CO₂ storage is evolving

- Preliminary analysis suggests 2.3 square mile area of review for 4 Mt total storage volume (200,000 mt/yr X 20 years)
- ~1500 acres for pore space, plan out \$50/acre = \$75,000/yr

Characterization and Permitting

RISK

Scope

- Drilling of a characterization well, built to regulatory specs
- Seismic data collection if required
- Data analysis and reporting
- Initial permit filing
- Detailed modeling and injectivity estimations
- Capture system scoping
- Construction Plan

Battelle Advantage

In-house well construction and data collection expertise and extensive network for field work in several locales

Deliverable: Recommendations for a Final Investment Decision

Site Characterization and Testing

- Seismic Survey through site (if necessary)
- Highly visible for local community

Case Study

- 6 mile 2-D seismic survey through CO₂ storage site shows fairly flat, continuous reservoir and caprocks
- No significant faults, fractures in reservoir, caprock, basement. Difficult to discern reservoir quality

BUSINESS SENSITIVE

Site Characterization and Testing

• Drill test well

- 2-3 acre well pad site prep and mobilization of drill rig
- 2-6 weeks drilling depending on total depth
- 24/7 drilling during
- Rock core sampling/tests
 - full core or sidewall coring or both in selected reservoir and caprock zones
- Wireline logging
 - geophysical logging runs to delineate rock properties
- Reservoir injection tests
 - brine injection tests to confirm sustainable injection rates, pressures

- Drilling test well shows basal sandstone 3755-4019 ft (264 ft thick...less than expected)
- Main porosity, permeability zone in middle SS.
- Shale stringers in upper zones. Low permeability caprocks >1000 ft total thickness.
- Injection test at 3 BBL/min at 600 psi (~540 metric tons CO₂/day equivalent or 197,000 metric tons per year.)

System Design

- Design of surface injection system, pipeline, surge tanks, SCADA system, compression, etc.
- Injection well design
- Reservoir modeling
- UIC Permitting

- Static earth model suggests best reservoir zone in middle basal sand.
- Reservoir simulations show area of review of 2.8 square miles or 1800 acres. Long-term pressure buildup possible, 2 injection wells recommended.
- Multi-stage compression, glycol dehydration for 1,100 psi design specified to reach supercritical CO₂ conditions.
- 7-mile pipeline to injection site.
- Submit Class VI permit for EPA review.

Construction

Deliverable: Permitted, functional and operational CO₂ injection well with capture, compression, monitoring and regulation tools in place.

Injection System Construction

- Drill additional Injection well(s)
 - Pending USEPA UIC Class VI "permit to construct," drill additional injection wells
 - Well completion (tubing, packer, interannulus fluid, SCADA system, etc.)
- Pipeline metering and construction
 - local distribution system at minimum (<20 km)
 - larger effort for "trunkline" system (>20 km)
- Surface Injection system construction
 - booster pumps, metering, safety, support buildings

- UIC Class VI 'permit to construct' passed.
- Drill 2nd injection well, which has better reservoir thickness, quality.
- Compression/dehydration capital/operating costs higher than expected.
- Local pipeline to injection site requires additional land acquisition.

Operation and Monitoring

Deliverable: Annual reporting as required by US EPA and IRS

Monitoring, Mitigation, and Verification (MMV)

- Prepare MMV plan
- Baseline testing and sampling
- Continuous system safety monitoring
- Periodic MMV of injected CO₂
- Associated UIC well workovers, monitoring and reporting

Time (Months)	-12	-10	-8	-6	-4	-2	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	E
Phase	Pre	injecti	on Ba	seline	Monit	oring								Active Injection										Post-Inject	
Conture System	<u> </u>	_	-	-	-		1	1	-	1	-	-	-	-	-	<u> </u>	-	-	-	-	1	-	r	_	т
Compression		-	-	-	-		-		-	-	-			-		-	-	-	-	-	-	-		+	t
Transport		-	-	-	-		-		-	-	-	-		-	-	-	-	-	-	-	+	-		+	÷
Transport								-	-	-	-	-		-	_	_	-	-	-	-	-	-		-	+
Injection System																									Т
SCADA																								_	Т
Health and Safety			-	-																				-	t
Mechanical Integrity Test			-	-		X							X						X					-	1
Well Workover			-	-					-	-	<u> </u>		X				-	-	X		-	-		-	1
			_	_				_		_	-	_			_	_	_	_			-			-	-
Passive Seismic																									
Groundwater Monitoring	х			X			х			X			X			X	_		X			X			
Soil-gas	х			Х			х			X			X			X			X			X			
Atmospheric Flux				X			х						X						X						
Miles lie e	<u> </u>		-	-		V	<u> </u>	-	_	V	_		V	_		v	_	-	V	_	_	V	·	_	-
Wireline		-	-	-	-	<u>×</u>	_	-	-	X	-	-	<u> </u>	_	-	X	-	-	<u>×</u>	_	-	X			+
VSP/X-well Sesimic		_	-	-		X		-	_	_	-	-	X	_	-	-	-	-	X	_	_	-		-	÷
Tracer Testing	-	-	-	-							-	-		-	-	-	-	-		-	-	-		+	4
Reservoir Sampling						x					_		X	_	_		_	_	X			_			
Well Indicator sensors																									4

- Monitoring plan uses 2nd well for verification well during early stages of injection.
- Reservoir pressure and temperature key parameters for monitoring.
- Cost-benefit approach utilized to streamline monitoring program, prioritizing most useful monitoring methods.
- Class VI permit approved, "permit to inject."

Injection O&M

• Active CO₂ injection

- System/injection-well operation and maintenance (O&M)
- Pipeline O&M
- Associated MMV

Case Study

- Pressure buildup in primary injection well requires injection in 2nd well after 9 months operation. 2nd well has better injectivity.
- Reservoir injection pressures remain several hundred psi below safety limits.
- CO₂ spreads less than models suggested.
- Some corrosion of wellhead materials requires workovers every 2-3 years.

BUSINESS SENSITIVE

Post Injection Site Closure

- Post-injection site closure- monitor pressure, CO₂ plume to demonstrate safety, containment, stabilization
- Plug & abandon wells

Case Study

- Monitor pressure fall off after injection stops, monitor any CO₂ migration
- Reservoir pressures return to within 10% baseline in 7-8 years
- Plug and abandon 2 injection wells
- Apply for early site closeout of Class VI permit
- Restore surface site

BUSINESS SENSITIVE

Summary

- CCS projects are being implemented in the MRCI
- Timeline for project development 2-4 years
- Phased approach can limit initial costs, reduce risks, and ensure safety
- Broadly seeing progress in:
 - Pore space ownership
 - Liability
 - Insurance
 - Injection field logistics

Timeline

Phased approach can minimize upfront costs, reduce risk, accommodate permitting, and ensure safety.

BUSINESS SENSITIVE

CO₂ Storage Projects in MRCI (not including CO2-EOR)

- 1 Active Class VI Well.
- ~9 CCS project sites pending.
- ~20 Class VI UIC permits with EPA Region 5
- ~10-15 additional CCS projects under development in MRCI.
- 4 post injection or closed out projects https://www.epa.gov/uic/class-vi-wells-permitted-epa (7/12/2023)

BUSINE

State	County	Permittee/Permit Applicant	Proposed CO2 Injection Rate	Maximum Total CO2 Injection Volume	Current Status	Current Project Phase
IL	Christian	HeartInd Grnway Navigator	N/A	N/A	Pending (6 permits)	Pre-construction
IL	Ford	One Earth Sequestration, LLC	N/A	N/A	Pending (3 permits)	Pre-construction
IL	Sangamon	City, Water, Light, & Power	N/A	N/A	(FEED)	(CarbonSAFE)
IL	Macon	ADM (IBDP)	1.0-1.2 Mt/year	6.0 Mt	Active	Injection
IL	Macon	ADM (IL ICSP)	N/A	N/A	Pending	Pre-Construction
IL	Macon	ADM (Maroa Campus)	N/A	N/A	Pending (3 permits)	Pre-Construction
IL	Mclean	HeartInd Grnway Navigator	N/A	N/A	Pending (2 permits)	Pre-Construction
IL	Putnam	Marquis Carbon Injection, LLC	N/A	N/A	Pending	Pre-Construction
IL	St. Clair	Carbon SAFE IL Corridor	NA	NA	Class VI prepared	Pre-Construction
IN	Randolph	One Carbon Partnership, LP	N/A	N/A	Pending	Pre-Construction
IN	Vigo	Wabash Carbon Services, LLC	0.834 Mt/year 0.834 Mt/year	10 Mt 10 Mt	Pending Pending	Pre-Construction Pre-Construction
IN	Lawrence	Heidelberg Materials	N/A	N/A	(FEED)	(CarbonSAFE)
OH	Lorain	Lorain Carbon Zero Solutions	N/A	N/A	Pending	Pre-Construction
KY	Boone	Duke East Bend	0.001 Mt/yr	0.001 Mt	Class V	Closed
IL	Macon	ADM	0.3 Mt	1.0 Mt	Class V	Post-Injection
MI	Otsego	Core Energy	0.5 Mt/year	0.06 Mt	Class V	Closed
WV	Mason	AEP Mountaineer	0.12 million metric tons/year	0.037 million metric tons total	Class V	Closed