CO₂ Storage and Injection Induced Seismicity

Sherilyn Williams-Stroud Prairie Research Institute, University of Illinois Urbana-Champaign Illinois Oil & Gas Association Annual Convention Pre-Convention Workshop

9 March 2023

Factors influencing induced seismicity

• Hydraulic fracturing

- Understanding existing fractures is key
 - They can be your friend... or your enemy
- Enhanced geothermal systems
 - Induced seismicity likely unavoidable
 - Successful mitigation is possible
- CCS in Illinois
 - Impactful reservoir heterogeneity occurs at meter scale
 - Induced seismicity in basement similar to other locations, but
 - Small faults consistent with small seismic events
 - Hydraulic or fluid connection to basement not guaranteed
 - Large uncertainties exist for pre-injection fault identification
 - downside: not useful to identify reactivation risk
 - upside: it likely indicates lower induced seismicity risk

Power Generation in Enhanced Geothermal Systems

 Relevant geological and engineering issues • High enough temperature ○ Reservoir permeability – natural plumbing system Reservoir creation Induced seismicity

Additional engineering is needed for hot rocks w/o existing hydrological systems.

≊USG

Creation of both permeability and reservoir is required

EGS and Induced Seismicity

- Development started with the Hot Dry Rock (HRD) project in late 1970s at Los Alamos National Lab
- HRD evolved into EGS (Engineered and then Enhanced Geothermal System)
- Induced seismicity magnitudes similar to oil & gas (including for oilfield water disposal)
- The Deep Heat Mining Project in Basel, Switzerland, induced a magnitude 3.4 event.

3D plots of induced seismicity at Basel Figure from Häring et al, 2010, Geothermics

Failure During Frac – Impact of Existing Fractures

Earthquake Magnitude Reference Energies

MICROSEISMICITY

Magnitude	-3	-2	-1	0	1	2	3	4	5	6	7	8	9
Energy in joules	2	63	2000	6.3 x 10 ⁴	2.0 x 10 ⁶	6.3 x 10 ⁷	2.0 x 10 ⁹	6.3 x 10 ¹⁰	2.0 x 10 ¹²	6.3 x 10 ¹³	2.0 x 10 ¹⁵	6.3 x 10 ¹⁶	2.0 x 10 ¹⁸
Example using common event	1 kg dropped 20 cm	Energy in a powerful slingshot	100 kg person jumps down 2 m	Energy released by 15 grams of TNT	Typical quarry blast	Only felt nearby	Energy from 50 litres of petrol	Often felt up to 10's of miles away	Energy from 50 000 litres of petrol	3.3 Hiroshima- size A bombs		1–2 earth- quakes this size each year	Total annual energy use of UK

Table modified from **British Geological Survey**

100 mph fastball = 230 joules

Gulf of Mexico – Stress Interpretation

Fractures in Shale Core, Simulated HydroFrac

Stimulation takes advantage of existing fracture network, event cloud not parallel to maximum stress.

Near-vertical fractures in core, strike oblique to maximum stress orientation.

Natural fracture orientation

Regional and borehole stress orientations

A

Average

source

mechanism

South-Central United States

- 18,506 Microseismic events located for a 5well stimulation
- Events are sized by magnitude
 - Provides a relative size
 - Magnitude range -2.795 to 0.723
- Events are colored by strike
 - Range is 0.12° 129°
- Full source mechanism solutions for each event
 - Includes strike, dip, rake, relative percentage of double-couple, volumetric, and CLVD components
- No wells, no horizon tops

View of event cloud from the west

Ι

Possible Interpretation

Slip Displacement Types

NORTH

Well Production Behavior

Fluid Injection Rate Influence on Induced Seismicity

HSIEH AND BREDEHOEFT: DENVER EARTHQUAKES

Figure Histograms showing relation between volume of waste injected into the Rocky Mountain Arsenal well and earthquake frequency. SOURCES: Adapted from Evans (1966); Healy et al. (1968); McClain (1970); Hsieh and Bredehoeft (1981).

CCUS at Decatur, Illinois

CCUS at Decatur, Illinois

- Large-scale demonstration
- Volume: 1 million tonnes
- Injection period: 3 years
- Injection rate: 1,000 tonnes/d
- Compression capacity: 1,100 tonnes/day
 Contribution:
- $\circ\,$ Geologic and Social Site Characterization
- $\circ\,$ Reservoir Modeling and Risk Assessment
- MVA Development and Engineering Design
 Stakeholder Engagement

Status:

- Post-injection monitoring ended April 2020
- Completed conceptual site model and history matching

Illinois Industrial CCS Project

- Industrial-scale demonstration
- \circ Volume: up to 5 million tonnes
- Injection period: 3 years (or longer)
- Injection rate: 3,000 tons/d
- Compression capacity: 2,200 tonnes/day
 Contribution:
- Commercial-scale up surface and subsurface
- Intelligent Monitoring
- $\circ\,$ Class VI permitting

Status:

- Injection Began April 7, 2017
- Optimization of capture process
- >2,000,000 (as of June 2021)

Fault Interpretation on Porosity Inversion

Historical Natural Seismicity Earthquakes in Illinois since 1795 **IBDP** site • Some activity in northern Illinois OT.R. McMille Moment tensors shown for 3.8 • Wabash and 4.2 Mw earthquake Most activity is in southern part of state, where basin is deepest Μw and has highest structural 0.20 -complexity Moment tensors shown for • Mw 5.2 EQ followed by a Mw 4.0 aftershock 5.29

Seismicity / Pumping Rate: Poor Correlation

Comparing to Wastewater Injection

	Location	Injection rate m³/day	Injection period	Induced seismicity	Felt seismicity	
scCO ₂	IBDP CCS1 well ¹	1123	3 years	Yes (Mw -2.1 to 1.2)	No	
injection	IL-ICCS CCS2 well ¹	1950	3 years	Little (Mw -2 to 0.8)	No	
ſ	East Texas ²	2000	1 year or more	Yes (Mw 4.8)	Yes	
Waste-	Williston Basin ³	3300	1 month or more	Some (Mw 1.4 to 2.8)	No	
injection	Arkansas ⁴	2030	1 year or more	Yes	Yes	
,	S. Texas (Eagle Ford) ⁵	900	Several months	Yes	Yes	

¹Williams-Stroud et al., BSSA 2020 ²Frolich, PNAS 2012 ³Frolich et al., SRL 2015

⁴Horton, SRL 2012 ⁵Frolich and Brunt, EPSL 2013

Factors influencing induced seismicity

Hydraulic fracturing

- Understanding existing fractures is key
 - They can be your friend... or your enemy
- Enhanced geothermal systems
 - Induced seismicity likely unavoidable
 - Successful mitigation is possible
- CCS in Illinois
 - Impactful reservoir heterogeneity occurs at meter scale
 - Induced seismicity in basement similar to other locations, but
 - Small faults consistent with small seismic events
 - Hydraulic or fluid connection to basement not guaranteed
 - Large uncertainties exist for pre-injection fault identification
 - downside: not useful to identify reactivation risk
 - upside: it likely indicates lower induced seismicity risk

Acknowledgments

- The Illinois Basin Decatur Project was funded by the U.S. Department of Energy (DOE)
- Understanding the data continues to improve through collaborations, including
 - The MRCI (Midwest Regional Carbon Initiative), a collaboration between multiple state geological surveys and academic institutions and industry, funded by DOE
 - Illinois Storage Corridor CarbonSAFE projects in other Illinois Basin locations

THANK YOU!