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Factors influencing induced seismicity

* Hydraulic fracturing

« Understanding existing fractures is key
* They can be your friend... or your enemy

 Enhanced geothermal systems
 Induced seismicity likely unavoidable
 Successful mitigation is possible
 CCSinlllinois -
* Impactful reservoir heterogeneity occurs at meter scale

* Induced seismicity in basement - similar to other locations, but
* Small faults consistent with small seismic events
* Hydraulic or fluid connection to basement not guaranteed
 Large uncertainties exist for pre-injection fault identification
» downside: not useful to identify reactivation risk
« upside: it likely indicates lower induced seismicity risk
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Hydraulic Fracturing Overview I
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Failure During Frac - Impact of Existing Fractures I
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Earthquake Magnitude Reference Energies
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http://www.bgs.ac.uk/discoveringGeology/hazards/earthquakes/magnitudeScaleCalculations.html

Gulf of Mexico - Stress Interpretation

Source mechanism from
event, lower hemisphere
projection

Average maximum horizontal stress
direction from crossed-dipole sonic log

first break, vol., 30, July 2012




Fractures in Shale Core, Simulated HydroFrac

Stimulation takes
advantage of existing
fracture network, event
cloud not parallel to
maximum stress.

Near-vertical fractures in
core, strike oblique to
maximum stress
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South-Central United States

18,506 Microseismic events located for a 5-
well stimulation

 Events are sized by magnitude
* Provides arelative size
* Magnitude range -2.795 to 0.723

 Events are colored by strike
* Rangeis0.12°-129°

*  Full source mechanism solutions for each
event

* Includes strike, dip, rake, relative percentage of
double-couple, volumetric, and CLVD
components

* Nowells, no horizon tops




View of event cloud from the west I

Possible Interpretation

Fault displacement
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Slip Displacement Types
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Monthly Gas Production (TCF)
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Fluid Injection Rate Influence on Induced Seismicity

Rocky Mountains Arsenal waste fluid injections, Rangely, CO USA, 1966
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CCUS at Decatur, Illinois I

CCUS at Decatur, Illinois Illinois Industrial CCS Project
o Industrial-scale demonstration ’ LLl NO'S

o Volume: up to 5 million tonnes INpusTRIAL CARBON
o Injection period: 3 years (or longer) CAPTURE & STORAGE
o Injection rate: 3,000 tons/d

L . i

o Large-scale demonstration

o Volume: 1 million tonnes

o Injection period: 3 years

o Injection rate: 1,000 tonnes/d

o Compression capacity: 1,100 tonnes/day o Compression capacity: 2,200 tonnes/day
Contribution: Contribution:
o Geologic and Social Site Characterization o Commercial-scale up surface and

subsurface
o Intelligent Monitoring
o Class VI permitting

o Reservoir Modeling and Risk Assessment
o MVA Development and Engineering Design
o Stakeholder Engagement

Status: StatUS:

« Post-injection monitoring ended April 2020 * Injection Began April 7, 2017

« Completed conceptual site model and * Optimization of capture process
history matching e >2.000,000 (as of June 2021)
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Porosity Inversion of Seismic Image :
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Fault Interpretation on Porosity Inversion
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Historical Natural Seismicity s I

=68° azimuth

>

S

Hmax

« Earthquakesin lllinois since
1795

* Some activity in northern
Illinois

* Moment tensors shown for 3.8
and 4.2 Mw earthquake

Wabash
@

e Most activity is in southern part
of state, where basin is deepest .,
and has highest structural 0.20 -
complexity

* Moment tensors shown for

Mw 5.2 EQ followed by a Mw
4.0 aftershock
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Eau Claire Shale
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Impacts on reservoir During CCS1 injection
response include: reservoir pressure increase
) ) was higher below a baffle
* Reservoir quality than above

* Injection zone depth

* Reservoir
heterogeneity, barriers
to vertical flow

 All these things Mt. Simon B O6 +0.19MPa
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Eau Claire Shale
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) During CCS2 injection
Impacts on reservoir reservoir pressure increase
response include: QD +0.22 MPa was higher above a baffle
« Reservoir quality than below

* Injection zone depth

* Reservoir
heterogeneity, barriers
to vertical flow +1.60 MPa

« All these things Mt. Simon B 8:: +1.64 MPa
have impact at a ¢ +1.34MPa
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Comparing to Wastewater Injection I

Location Injection rate | Injection period Induced seismicity Felt
m3/day selsmlaty

scCO, __ " IBDP CCS1 well® 1123 3years Yes (Mw -2.1to0 1.2)
injection | IL-ICCS CCS2 well 1950 3years Little (Mw -2 to 0.8) No
B East Texas? 2000 1yearor more Yes (Mw 4.8) Yes
w:tséf_ B Williston Basin3 3300 1monthormore  Some(Mw1l.4t02.8) No
injection Arkansas* 2030 1yearor more Yes Yes
S. Texas (Eagle Ford)> 900 Several months Yes Yes

—

IWilliams-Stroud et al., BSSA 2020
2Frolich, PNAS 2012
3Frolich et al., SRL 2015



Factors influencing induced seismicity

* Hydraulic fracturing
» Understanding existing fractures is key

* They can be your friend... or your enemy
 Enhanced geothermal systems
 Induced seismicity likely unavoidable
 Successful mitigation is possible
* CCSinlllinois -
* Impactful reservoir heterogeneity occurs at meter scale
* Induced seismicity in basement - similar to other locations, but

* Small faults consistent with small seismic events
* Hydraulic or fluid connection to basement not guaranteed
 Large uncertainties exist for pre-injection fault identification
» downside: not useful to identify reactivation risk
« upside: it likely indicates lower induced seismicity risk
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